
Abstract
ncDataReader2 [1] is an open-source solution for the
efficient interpolating access to external data sets.
The library of C-functions can be used with different
applications and works well with Modelica. Data sets
can be easily accessed as continuous functions using
different interpolation and extrapolation methods.
The application range covers reading generated or
measured data, the integration of simulation results
from Modelica or other systems and the validation,
parametrization and optimization of models using
external data. Data sources may be local files or
remote servers. Using the netCDF file format [2], the
DAP network protocol [3] and different optimization
approaches the data access can be surprisingly fast,
even for large remote files with many variables
containing millions of values.

1 Introduction
Getting external data into a simulation model is an
important task for a lot of applications: buildings and
energy plants are exposed to weather factors,
complex models need to be validated with measured
values and some simulations require results from
other simulation runs.

The access conditions can vary significantly. A
dense grid of data can be interpolated in small or in
large intervals, and so can a wide grid. A large
dataset may be evaluated only in one point to
compute initial values or interpolated a million
times, moving backward, forward or randomly on
the x-axis. For some of these conditions and small
amounts of data the Table-like classes of the
Modelica Standard Library are a good choice, but for
different application scenarios the ncDataReader2
offers some real advantages:

• very fast, even with large amounts of data

• load on demand (only needed data is read and
processed)

• low memory consumption (adjustable, suitable
for embedded simulations)

• clever caching mechanisms, tunable for different
access characteristics

• different interpolation and extrapolation methods

• offset and scaling of values for unit conversion
and memory-efficient storage

• API1 (ANSI C) and data files work the same way
in Modelica systems and other applications

• data can be accessed locally or with a highly
efficient network protocol (DAP)

Although used mainly for 1D data sets the library
includes basic support for variables depending on
two dimensions (scattered 3D-points)2. This paper
will focus on the 1D functions.

1.1 History and Development
The development of the file reader library started
more than 10 years ago as a tool for the DAE
simulation system SMILE. Until now it was
constantly improved and tested with SMILE [5],
ANSYS CFX [6], the Modelica systems
OpenModelica and Dymola and with proprietary
applications.

ncDataReader2 is open-source software, everybody
is invited to use and improve it under the terms of
the GNU LGPL [7].

1 API - Application Programmers Interface: the data and
functions available for the programmer

2 using the csa library from [4]

Accessing External Data on Local Media and Remote Servers
Using a Highly Optimized File Reader Library

Dipl.-Ing.
Jörg Rädler

Dipl.-Ing. Manuel
Ljubijankic

Prof. Dr.-Ing. Christoph
Nytsch-Geusen

M.Sc.Dipl.-Ing.(Fh)
Jörg Huber

Berlin University of the Arts / Universität der Künste Berlin (UdK)
Hardenbergstrasse 33, 10623 Berlin, Germany

jraedler@udk-berlin.de manuel@udk-berlin.de nytsch@udk-berlin.de jhuber@udk-berlin.de

DOI Proceedings of the 9th International Modelica Conference 323
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

1.2 netCDF – the file format
netCDF is a binary file format3 and a program library
developed for large amounts of multi-dimensional
geoscientific data. The big advantage over other
formats is the ability to access pieces of data without
reading whole data sets or even whole files. netCDF
files are self-describing and may contain structured
data of different dimensions. This makes a very good
format to archive numerical data and a perfect base
for a file reader used in DAE simulations.

1.3 Interpolation and Extrapolation
ncDataReader2 includes the interpolation methods
Akima (most used), linear, discrete and smoothed
steps4 (see figure 1). Akima interpolation is a cubic
method that gives smooth results (C1-continuity)
without the tendency to overshoot. In contrast to
classical cubic spline interpolation the points have
only local influence, which perfectly complements
the local access in netCDF. To get an interpolated
value only some of the neighbouring points have to
be read and processed after the search for the
matching interval.

Extrapolation methods are implemented as periodic
or natural (depending on the interpolation method).

3 Recent versions of the netCDF format are based on the
HDF5 file format which is now used in MATLAB and
many other applications.

4 Adjustable continuous approximation of discrete
characteristics with C1-continuity, using linear parts
and sin()-functions. Strictly speaking this is no real
interpolation since the points are often not hit.

1.4 Tuning and Optimization
Variables may be fully loaded at initialization time,
loaded in chunks of a specific size or as single values
on demand. Three different caches may be enabled
and changed in size:

• a lookup cache stores results of the interval
search,

• a parameter cache holds the parameters of the
linear or cubic function of an interval (both for
successive requests of nearby values) and

• a value cache contains the last computed values
(for successive requests of the same values).

The effect of these optimizations strongly depends
on the access characteristics but may give a speedup
factor of 100 and more in some cases.

The methods for interpolation and extrapolation as
well as all parameters regarding loading, scaling and
caches are preset to reasonable default values. All
settings may be adjusted using attributes in the
netCDF file or with the C API (full API only, see
below).

Performance Example

The effect of clever using the optimization methods
can be demonstrated with the example BigFile
contained in the library. A data file with a size of
840 MB contains 10 variables each with 10 million
random values. A Modelica class integrates the
interpolated values of two of these variables (Akima
method) over a sub-range of the abscissa. The result
of the 500000 time steps is written to the result file.

With OpenModelica using default settings on a
common PC5 the program finishes in about 5
seconds! This includes the complete run with
initialization, data reading, more than one million
interpolations, numerical integration and writing of
the results. Some other approaches would need much
longer just to load the data file.

This performance is achieved by a combination of
the lookup and parameter caches and by loading the
data in chunks on demand.

5 OpenModelica 1.8.1, Ubuntu Linux,
Intel Core2 Duo E7200@2.53GHz, 4GB RAM

Fig 1: Interpolation methods

 1

 2

 3

 4

 5

 6

 7

 8

 3 4 5 6 7 8

In
te

rp
o
la

te
d
 V

a
lu

e
s

Abscissa

Discrete
SinSteps

Linear
Akima
Points

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

324 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

2 Modelica API
ncDataReader2 offers a full API and a so called easy
API. The latter limits the configuration options and
requires compliance to some restrictions, but it can
be used in Modelica without writing C code. The full
API is slightly faster and offers access to all options,
but uses data types not available in Modelica.
Therefore it requires adapted external functions and
a bit more programming.

Both methods require the prior installation of the
libraries ncDataReader2 and netCDF (which may
depend on other libraries). The names of the files
actually needed depend on the operating system,
simulation software and compiler6.

Most Linux distributions already contain the required
packages for netCDF. For Windows precompiled
files (.dll, .lib, .h) are provided by the developers.

The structure of the different APIs and libraries is
shown in figure 2.

6 The search for files by the compiler on Windows
systems may be confusing. Copy all files to the current
working directory if in doubt.

2.1 Easy API
The Modelica package NcDataReader2 contains
definitions of all functions of the easy API. A very
basic example demonstrates the usage:

Two functions of this package are used here:

• ncEasyGetAttributeDouble reads a
scalar attribute to initialize a. The first and third
arguments are the names of the file and the
attribute. The second argument may be a variable
name or empty (to use a global file attribute).
Similar functions exist for attributes of integer
and string types.

• ncEasyGet1D returns the interpolated value of
the variable v1 at the point time. A similar
function for 3D-points exists.

model NcEasyTest
 import nc = NcDataReader2.Functions;
 parameter String fn = "etest.nc";
 Real t;
 Real a = nc.ncEasyGetAttributeDouble(
 fn, "", "start_value");
 equation
 t = nc.ncEasyGet1D(fn, "v1", time);
 der(a) = t;
end NcEasyTest;

Fig 2: Different ways of using ncDataReader2 with Modelica and other applications

Modelica ModelModelica Model ANSYS
CFX

ANSYS
CFX

ncDataReader2 library
interpolation, extrapolation, caching, data handling

ncDataReader2 library
interpolation, extrapolation, caching, data handling

netCDF library
data storage (netCDF, HDF5, DAP)

netCDF library
data storage (netCDF, HDF5, DAP)

DAP-Server
OpenDAP, Pydap

DAP-Server
OpenDAP, Pydap

Remote data files
data.nc, data.hdf,

data.mat, data.csv, ...

Remote data files
data.nc, data.hdf,

data.mat, data.csv, ...

Local data files
data01.nc, data02.nc,

data03.nc, ...

Local data files
data01.nc, data02.nc,

data03.nc, ...

Full API Easy API

Modelica
Model

Modelica
Model

Other
Applications

Other
Applications

C-WrapperC-Wrapper

Internet /
Intranet

DAP
client

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 325
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

At the first call to ncEasyGet1D the file is opened,
the abscissa and dimensions of the variable are
determined, optional attributes are evaluated and
internal data structures are created and stored for
later use. Subsequent calls with the same file name
and variable name reuse these structures. Different
variables depending on different abscissas in
different files can be used at the same time.

2.2 Full API
The full API can only be used in C, not in Modelica.
To utilize this API wrapper functions are required to
hide the complexity from Modelica. The function
definitions are split up in two parts:

a) A C-file which defines wrapper functions with
simple interfaces (arguments and return values)
to be used in Modelica. Inside these functions the
full API may be used. A common case is to have
one function with initialization code and one
small function for each variable to return the
interpolated values. This can usually be done
within a couple of lines. All settings and options
of the library may be changed in this file.

b) A Modelica file containing mappings of the C-
functions to Modelica functions (usually 1:1).
This includes the number and types of arguments
and return values.

Although these steps are quite simple, an example
would be too big to show here. Please have a look at
the example in NcDataReader2.Examples.FullAPI.

3 Preparation of Files
Converting data into the netCDF format may be the
hardest task for users without prior knowledge of
netCDF. There exists no general graphical tool for
this job, but besides command line tools for the
conversion of an ASCII-based format there are
libraries for all major programming languages (C,
C++, Java, Python, Perl, Octave, MATLAB, …) and
platforms.

A new project [8] from Microsoft Research provides
a .NET-API, a graphical data viewer, command line
tools and a plug-in for MS EXCEL to read and
manipulate netCDF files on Windows systems.

The favourite method of the authors is scripting in
Python. A lot of file formats can be read with

Python, and consistency checks and unit conversions
may be included in a script. The conversion of a
simple CSV file can be done within 7 lines of Python
code. This method works on all platforms.

When using a DAP server the conversion may be
omitted entirely for some file formats.

4 Data Server with DAP
DAP is a protocol for the transport of
multidimensional gridded data over networks. It is
based on HTTP, but allows the request and the
transport of specific parts of a file in different
formats. DAP servers are able to serve requests like
“send me the values 1500...2000 of the variable
'temperature' in the file 'data.mat' converted to CSV
format”. Clients can browse and request data with
ease and efficiency. Data formats are converted on
demand by the software (supported formats depend
on the actual implementation).

Since newer versions of the netCDF library
implement the client side of the DAP protocol, a
DAP server can be used with ncDataReader2 like a
local file, just by replacing the file name with an
URI.

For Modelica users this combination offers a lot of
options. External data used by simulations can be
hosted on different servers worldwide. During
simulation, only the actually needed parts are
transferred to the simulation system. This ensures the
up-to-dateness and the consistency of data across
simulations and allows the cooperation of different
institutions without sending complete files.

4.1 DAP server at the UdK
A new server at the Berlin University of the Arts
(UdK) was installed for this purpose. It provides
different kinds of data to a research group:

• Weather files for different locations worldwide,
generated with METEONORM [9] and
converted to netCDF (see 5.1).

• Data from the monitoring of a photovoltaic
system located at the UdK main building. The
data is read from the monitoring hardware and
stored in netCDF files in regular intervals (see
5.3).

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

326 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

• Results from different simulations of the
research group.

The server runs on common PC hardware using
Linux, Apache and the Pydap [10] software.

5 Current Applications in Research

5.1 Reading Weather Files
Data sets with weather parameters were the first
application for the data reader and still are most
used. Thermal building simulation and simulations
of solar systems require reliable information about
the environmental conditions as functions of time.
These conditions include:

• temperature, pressure and moisture of the air,

• wind speed and direction,

• direct and diffuse radiation, cloud cover.

For the evaluation of the radiation on different
surfaces the position of the sun is needed, which can
be calculated from the latitude, longitude and time
zone of the location.

All this information can be easily stored in a netCDF
file. Over the years some conventions regarding the
file structure, the units and the names of variables
and attributes have evolved and proved to be useful.

All this data is read and processed by a Modelica
class (DataWeatherNetCDF). With the file name or
URI as a parameter of this class the complete
environmental conditions of a location may be set
and changed. The contained quantities and some
derived quantities are available as continuous
functions of time. Common problems like negative
radiation values caused by the cubic interpolation are
handled. For different oriented surfaces the radiation
values will be converted by a helper class
(RadiationTransformer). All these classes are now
part of the new Modelica library BuildingSystems
[11] which is developed by the authors.

Generating Files

The files may be created from different data sources.
The authors mainly used weather information from
the TRY/Testreferenzjahr [12] and data sets
generated with the application METEONORM. The
latter let the user define own ASCII-based export
formats, which can be easily converted to netCDF by

a Python script. Our script now includes consistency
checks, unit conversions, preparation for periodic
extrapolation and much more.

With this method a library of weather files for
different locations is built and expanded. The files
reside on the DAP server (see 4.1) and are accessible
by the whole research group. Data for new locations
or new conditions can be generated and made
available within minutes.

The time grid of most data files is equally spaced in
hourly steps covering one year, but the software
stack (DAP, netCDF, ncDataReader2, Modelica
classes) works perfectly with different and variable
steps and in other scales.

5.2 Loose Coupling of ANSYS CFX with
Dymola

A research project at the UdK covers the co-
simulation of a solar thermal plant. For pre-studies of
a use case the ncDataReader2 is used for loose
coupling. It reads the results of a Modelica
simulation into the boundary conditions of a CFD7
simulation with ANSYS CFX.

The main components of the plant are:

• an evacuated tube collector,

• a hot water storage and

• an external plate heat exchanger, transferring the
produced thermal energy from the solar loop to
the storage loop.

By using a two-point-controller the solar pump and
the storage pump are simultaneously switched on.
The system is modelled with Modelica, most
components are based on the Modelica library
BuildingSystems for thermo-hydraulic network
simulation. The weather data is provided by the
technology described in the previous section.

The storage model (marked in Fig. 3) can be either
implemented in Modelica (1D) or in CFX (3D). The
co-simulation of Modelica and CFX is described in
[13]. It gives more accurate results regarding the
details of the storage, but it runs much slower than
the pure Modelica simulation.

Additionally stand-alone CFX simulations of the
storage component were needed in the project. One

7 Computational Fluid Dynamics

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 327
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

of the questions to answer was the best resolution of
the grid for the 3D model under typical conditions in
the solar system. A high resolution will slow down
the simulations, a wide grid will not reach the
desired accuracy. A complete co-simulation model
proved to be too slow to study this point in detail.

For a transient stand-alone CFX simulation of the
thermal storage some boundary conditions are
necessary to describe the installation situation. It
would be possible to generate the time-dependant
conditions with C-functions emulating the behaviour
of the whole system, but the effort for this would be
enormous. At this point it's much more comfortable
to use the results from the system simulation with the
simple storage model implemented in pure Modelica.

Dymola creates a result files in MATLAB format
during the simulation. The structure of this file is
quite complex, but can be read and converted with
different tools. One is the Python package DyMat
[14] which directly exports variables to different
formats including netCDF.

The CFD model needs values for three quantities:

• inlet mass flow,

• inlet temperature,

• outlet pressure.

The time series for these variables can now be saved
in a netCDF file.

ANSYS-CFX provides an API to implement
dynamic conditions as Fortran functions. Since it is
possible (but tricky) to call C-functions from this
Fortran-API, ncDataReader2 can be used from this
API with a small wrapper file to provide the values
as interpolated functions of time.

The complete workflow is now:

a) Run simulations in Modelica using the pure
Modelica storage model.

b) Convert the required results from the mat-file to
netCDF format using DyMat.

c) Run CFX simulation of the complex storage
model, reading boundary conditions from the
netCDF file using ncDataReader2 and a Fortran
wrapper.

Fig 3: Modelica view of the co-simulation model of the solar thermal plant

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

328 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

With this technology a stand-alone ANSYS-CFX
simulation for the thermal storage can be started with
dynamic adapted boundary conditions after each
time step. Thus the CFX model is embedded in the
same environment as the Modelica storage model in
the system simulation for the solar thermal plant
before.

This made it possible to research and tune the CFX
model with respect to grid resolution and other
parameters under typical conditions. Similar
conditions appear in the real co-simulation which is
the main topic of the research project [15].

5.3 Parametrization of the Model of a
Photovoltaic Plant

The ncDataReader2 was used for the integration of
measured data from a real photovoltaic (PV) system
into a simulation model of the system. The complete
field has an electrical power output (peak) of
15.5 kW and is located on the roof of the UdK Berlin
main building. The measured values such as air and
module temperature, solar irradiation, electrical
output are used as climate boundary conditions of the
Modelica system model and as comparison values
for the model validation (see Fig. 5 and 6).

The Modelica model was configured by the use of
the BuildingSystems library. One of the three strings
of the photovoltaic field was modelled by the
assumption of 22 serial connected PV modules. Each
module (Type TSM-PC05) has a peak performance
of about 230 W, so the total peak performance of the

Fig 4: Storage model: a) Modelica connection component for the 3D model, b) grid of the CFX model,
c) example of a temperature field using boundary conditions from the Modelica simulation

Inlet:
mass-flow
temperature

Outlet:
pressure

Fig 5: Photovoltaic system on the roof of the UdK
main building with sensors for solar irradiation,

wind speed, temperatures of air and modules

Fig 6: Model of the photovoltaic
system, modelled with the
BuildingSystems library

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 329
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

string is about 5.060 W. The simplified model of a
PV module of the BuildingSystems library was used,
which works with an electrical one-diode model and
an empirical thermal approach for the calculation of
the cell temperature, depending on the air
temperature of the cell environment [16].

Figure 7 shows the measured and the simulated
values (temperatures, voltage, current and electric
power) of the string of 22 PV modules during three
summer days. All quantities have similar values for
the real PV plant and for its simulation model. The
cell temperature runs up two 20°C higher than the
environment air temperature. Also the string voltage
values are similar during the sunshine, in which the
simulated values are higher than the measured
values, the same goes for the current. After sunset
the values of the simulation model are greater than
zero, which is only a result of the modelling
approach.

During the first two days the generated electrical
power reaches the peak power for a short period. The
collapse of the calculated electrical power during the
morning hours is caused by a shading of the
radiation sensor. The simulated performance drops

because of the measured radiation, but the real
measured performance is not affected. The position
of the sensor will be moved to a better place in the
future.

It is typical for a one-diode model that the voltage
and current values are higher than the real values,
because a part of the internal losses of the PV cells is
neglected. Therefore a constant correction factor is
used in this model for the calculation of the power
from the voltage and current. This factor is a model
parameter that depends on the real qualities of a
module (materials and construction). Unfortunately it
can not be derived easily from the properties that are
usually known.

With simulations using measured values of the real
system this factor can be approximated. For the three
days of the shown configuration a value of 0.82
proved to be ideal to bring the calculated electrical
power close to the real (measured) values.

The plant is monitored permanently and all values
are archived on a data server (see 4.1). This makes it
possible to adjust the correction factor of the model
with simulations using recent measurements. This
task can even be done fully automated.

Fig 7: Comparison of measured and simulated values for three summer days:

a) cell temperature: simulated (blue), measured (red); measured air temperature (green)
b) string voltage: simulated (blue), measured (red)
c) string current: simulated (blue), measured (red)
d) string power: simulated (blue), measured (red)

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

330 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

6 Conclusions and Outlook
The library was used for more than 10 years in a
wide range of applications. It can be used with
Modelica and other systems to access data in
different ways. In combination with a DAP server it
offers the remote access to different data sources.

The most used application today is reading weather
data in Modelica simulations of buildings and solar
systems. But it is easy to use the library for other
purposes and with different software packages.

Although the library is in a stable state there are
some possible improvements for the future:

• better integration with Modelica runtime systems
(e.g. error handling and reporting),

• supplying information on derivatives of
functions for improved integration performance,

• implementing optimizations for special cases
like equally spaced grids,

• providing better tools for the conversion and
preparation of data files,

• possibly including the library and its
dependencies in Modelica systems (Dymola,
OpenModelica, jModelica) to avoid the complex
installation process on the different platforms by
the user,

• finding a better name for the project. :-)

References
[1] ncDataReader2:

http://j-raedler.de/projects/ncDataReader2
[2] netCDF:

http://www.unidata.ucar.edu/software/netcdf/
[3] DAP/OpenDAP:

http://www.opendap.org/
[4] CSA:

http://code.google.com/p/csa-c/
[5] Ernst, T., Klein-Robbenhaar, C., Nordwig, A.,

Schrag, T.: Modeling and simulation of hybrid
systems with SMILE, in: Informatik,
Forschung undEntwicklung, 15:33-55, 2000

[6] ANSYS CFD:
http://alturl.com/m8fpb

[7] LGPL:
http://www.gnu.de/documents/lgpl-2.1.en.html

[8] Dmitrov:
http://alturl.com/g8wzk

[9] METEONORM:
http://www.meteonorm.com

[10] Pydap:
http://pydap.org

[11] BuildingSystems:
http://www.modelica-buildingsystems.de

[12] TRY:
http://www.dwd.de/TRY

[13] Ljubijankić, M., Nytsch-Geusen, C., Rädler, J.,
Löffler, M.: Numerical coupling of Modelica
and CFD for building energy supply systems,
in: Proceedings of the 8th International
Modelica Conference, 2011

[14] DyMat:
http://j-raedler.de/projects/DyMat

[15] Ljubijankić, M., Nytsch-Geusen, C., Jänicke,
A., Schmidt, M.: Advanced analysis of coupled
1D / 3D simulation models by the use of a solar
thermal system, in: Proceedings of the Building
Simulation, 2011

[16] Nytsch, C., Quaschning, V., Scholtz, G.:
Photovoltaik Modelle für die
Simulationsumgebung SMILE, in:
Tagungsband: 15. Symposium Photovoltaische
Solarenergie in Staffelstein,
OTTI-Technologiekolleg, Regensburg, 2000

Session 3A: Mixed Simulation Techniques I

DOI Proceedings of the 9th International Modelica Conference 331
10.3384/ecp12076323 September 3-5, 2012, Munich, Germany

http://j-raedler.de/projects/ncDataReader2
http://j-raedler.de/projects/DyMat
http://www.dwd.de/TRY
http://www.modelica-buildingsystems.de/
http://pydap.org/
http://www.meteonorm.com/
http://alturl.com/g8wzk
http://www.gnu.de/documents/lgpl-2.1.en.html
http://alturl.com/m8fpb
http://code.google.com/p/csa-c/
http://www.opendap.org/
http://www.unidata.ucar.edu/software/netcdf/

Accessing External Data on Local Media and Remote Servers Using a Highly Optimized File …

332 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076323

